SystemClick — A Domain-specific Framework for Early
Exploration Using Functional Performance Models

*
Christian Sauer, Matthias Gries , Hans-Peter Lob
Infineon Technologies AG, Munich, Germany

{Christian.Sauer|HansPeter.Loeb}@infineon.com; gries@computer.org

ABSTRACT

A wireless network (WLAN) provides unique challenges to
system design. A WLAN uses a shared and highly unreli-
able medium, where protocols must rely on precise timing of
requests and responses to detect submission errors and prior-
ities among network nodes. In addition, WLAN stations are
often embedded and have tight constraints on power, costs,
and performance. To design WLAN nodes, precise estima-
tions on performance and resource usage are needed for the
complete network system to explore the design space and
assess the quality of solutions. Our SystemClick framework
combines SystemC with resource models and performance
annotations derived from actual implementations based on
Click. Model generation is automated, and the performance
of a SystemClick model is obtained depending on actual ac-
tivation patterns of different functional blocks in the model.
A 802.11 a/b/g/e case study demonstrates our approach for
the analysis of real-time critical systems.

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies; C.4 [Performance of Systems]:
Modeling Techniques

General Terms

Design, Languages, Performance.

Keywords
System evaluation, ESL, design space exploration, WLAN.

1. INTRODUCTION

Wireless network (WLAN) properties are clearly distinct
from other domains. One may argue that similarities exist
to wired networks. We recognize the dataflow-driven nature
of frame processing, where many tasks only work on the
frame header, and some concurrency among network flows.
However, a WLAN uses a medium (the air) that is not only
shared among members of the same network, but also among
independent networks and possibly other wireless devices.

*Current affiliation: Intel GmbH, Braunschweig, Germany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DAC 2008, June 8-13, 2008, Anaheim, California, USA

Copyright 2008 ACM 978-1-60558-115-6/08/0006...5.00

480

As a result, transmissions work in half duplex mode only. In
addition, the medium is highly unreliable due to reflections,
varying environment (e.g., because of moving objects and
stations), and interference.

Consequently, WLAN protocols are special. They rely
on precise timing to detect and repair transmission errors
and distinguish priorities among network nodes. A WLAN,
such as IEEE 802.11, provides mechanisms to avoid colli-
sions (e.g., reservation timers) rather than recover from col-
lisions (as traditional Ethernet). Since the medium is unre-
liable and transfer quality can vary quickly, WLAN stacks
spend considerable more time with exchanging station state
on a regular basis than protocols for wired networks. This
has led to many different frame formats for data transfers,
control mechanisms (such as medium reservation), and man-
agement of the network organization.

In order to answer Electronic System Level (ESL) design
questions, such as “what is the required allocation of re-
sources”, “how should functionality be partitioned among
hard- and software”; or “can all frame transmission deadlines
be met”, a customized ESL design flow for WLAN systems
is needed. Mandatory features for this flow include:

e Functional correct protocol behavior: Due to the variety of
frame formats, control, and management tasks, protocols
must interact correctly to represent a realistic system.

e Timing correct protocol interaction: Precise timing re-
quirements, e.g., for sending acknowledgements after the
reception of a frame, are part of the protocol definition.
System evaluation therefore requires a notion of time.

e Precise performance estimation: Actual system imple-
mentations incur variable frame processing delays, work-
ing against transmission deadlines defined by WLAN pro-
tocols. Quantitative performance estimation of the system
is needed to indicate feasible implementations.

Only the combination of these essential features allows a
meaningful exploration of the design space, since WLAN
stations rely on timed protocols, are subject to tight con-
straints on power and costs, and have to cope with time
varying properties of a shared communication medium sus-
ceptible to many kinds of unforeseeable distortions.

Our design framework SystemClick is customized to these
requirements by providing the following capabilities:

e Functional correct building blocks known from network
processing can be instantiated to model protocol behavior.
The description is based on Click [5], which is widely used
for modular protocol descriptions.

e Models for communication and processing resources with
customizable arbitration enable configurable mappings of
functionality to platform architectures.

271



e Using performance annotation, function-to-resource map-
pings can be analyzed at simulation run-time. This way,
system performance is derived based on activity, queuing,
and arbitration in the model.

e Embedded code can be generated from the Click model
and profiled using CRACC [14]. Precise performance tags
per function are annotated to the SystemClick model.

e SystemClick uses SystemC for timed simulation, model
refinement (offering a path to implementation), and inte-
gration with other models of the system (e.g., mixed signal
models of the physical layer).

Next, we discuss why WLAN provides a challenging setup
for ESL evaluation and design space exploration. Section 3
then describes our ESL design framework SystemClick. Sec-
tion 4 continues with a detailed model and evaluation of an
IEEE 802.11 a/b/g/e network. We review related work in
Section 5 and conclude in Section 6.

2. WLAN PROPERTIES & DESIGN SPACE

This section explains why WLANSs present a unique chal-
lenge for early system-level design exploration.

2.1 Data, Management, and Control

We recognize the diversity of functionality that must be
supported. Data frames can be fragmented, transferred
in bursts, encrypted, encapsulated with additional proto-
col headers, freed from protocol information, or the current
header may be modified. Management tasks include the au-
thentication and association with an access point (AP) to
gain network access, monitoring network properties period-
ically broadcast by the AP, and reserving transfer time for
longer periods using the AP as arbiter. Finally, fine-grain
control frames coordinate the medium reservation for atomic
transfers and acknowledgements for data frames. Apart
from these tasks the coordination of shared medium access
is based on randomized algorithms in each station, where
free air time must be monitored and a new transmission
opportunity is randomly selected.

2.2 Protocol Timing Constraints

Different frames and the coordination of shared medium
access have to follow strict timing rules. Figure 1 shows an
atomic frame transfer including an optional medium reser-
vation sequence. In this example, station STA has gained

SIFS SIFS
DIFS & backoff; SIFS

STA| 7ZZ|®Ts| | 1 [ Daaframe |

CTS ACK

time

AP

Figure 1: Atomic data frame transfer (IEEE 802.11).

access to the air and sends a reservation request (RT'S frame)
to the access point (AP). The AP has to reply after a de-
fined time interval (SIFS period) with a CTS control frame.
After reception of CTS, the STA starts the data transfer
after another SIFS period. At the end, the AP confirms the
successful reception of the data with an ACK control frame,
again after a SIFS period. This sequence is atomic. The
SIFS periods take care of not being interrupted by others
since stations have to wait considerably longer than SIFS
after recognizing the free medium in order to transmit on
the air (DIFS period and random backoff).

481

All these strict timing requirements dealing with medium
access are in the low us range. As a result, the cycle budget
for the required frame processing is tight, see Section 4.

2.3 Design Space

Implementations can vary from hardwired specialized
blocks and programmable application-specific processors
(ASIPs) to general purpose processing elements, all rely-
ing on decent interconnect and memory architectures that
unfold several dimensions in the design space. In software,
functionality can be implemented as micro kernels, not rely-
ing on any OS services, whereas some protocol stacks rely on
an OS. Also, the choice of integration with other host func-
tionality affects the selection of system interfaces and the
partition of functionality. Examples are an AP that does all
required processing steps on its own, whereas an STA may
be part of a laptop using the capabilities of the host. Finally,
a WLAN design is an embedded system, implying tight con-
straints on power dissipation, cost (area, IP licenses, design
effort), and performance (throughput, keeping deadlines).

In summary, the variety of required functionality and pro-
tocols suggests a flexible and programmable solution. On
the other hand, design constraints force us to think about
accelerators and optimized partitions of functionality. This
is why we need a customized design flow for WLAN systems
to enable early but quantitative design space exploration.

3. SYSTEMCLICK FRAMEWORK

For iterative exploration early in the design process, a fast
yet performance-indicative way to evaluate implementation
variants is required. For this purpose, we have developed
the SystemClick framework which generates SystemC per-
formance models from high-level descriptions. SystemClick

System
Function
Model

Architecture
Model

Click
resource
description

Click
task graph

I

Platform
resources
SystemC

Annotated Click model

SystemClick SystemC model

Profiling

Figure 2: The Y-chart using SystemClick.

is based on the Y-chart approach [4] that is commonly used
for design space exploration. Application and architecture
specifications are independent and kept separately. Only an
explicit mapping step leads to an analyzable system imple-
mentation. A consecutive profiling and performance anal-
ysis step provides feedback for optimizing architecture, ap-
plication, or mapping. Figure 2 shows the Y-chart for early
design space exploration using SystemClick. The different
facets of the framework are explained next.

3.1 Application models in Click

We describe the application, i.e. the functionality of the
WLAN protocol, in an architecture-independent way using
Click [5]. Click is a language and framework for describing
packet processing applications. In Click, applications are
composed from elements linked by directed connections. El-



ements describe common computational network operations.
Connections specify the flow of packets between elements.
Only packets are communicated between elements, state is
kept local within elements. Figure 5 (case study) shows the
wireless Media Access Control (MAC) layer as an example.
Click models capture the concurrency in the application and
the dependencies between elements naturally. For verifica-
tion of the system function, the simulation engine that comes
with the framework in combination with bit-true traffic gen-
erators can be used. The resulting functionally-correct Click
model becomes an input into the mapping step.

3.2 Architecture models in SystemC

For SystemClick’s performance models, architectures are
abstracted as a set of shared computation and communi-
cation resources which arbitrate tasks and consume time.
This is reasonable since these aspects alone already have
a significant performance impact. A platform architecture
is represented by a collection of specialized Click elements.
These resource manager (RM) elements specify the proper-
ties of a resource, e.g., its type, operating frequency, and
scheduling policy. This description is used as input into the
mapping step. Resources are implemented in SystemC. To
fasten the exploration process, abstract RM elements may
be inferred automatically from the Click architecture repre-
sentation. SystemC, however, enables step-wise refinement,
mixed-level simulations, and virtual prototyping.

3.3 Mapping and code generation

A Click application graph is partitioned at element bound-
aries and mapped onto a multi-processor platform manually.
To support and ease this task, specialized Click elements are
provided, which can be instantiated to guide the code gener-
ation process and help to describe mapping specifics. Com-
munication wrappers, for instance, partition a Click graph
by cutting and naming a connection. They can be inferred
automatically or used explicitly by the designer to partition,
refine, and map the communication. To keep concerns sep-
arated different source files may be used for application de-
scription, platform specification, and mapping annotation.

Figure 3 shows a SystemClick application-architecture
mapping. Each task chain of the partitioned graph is as-
sociated with a computation resource (shown in the upper
part of the figure). Communication between tasks on differ-
ent elements is associated with communication resources (in
the lower part). Wrappers (not shown in the figure) extend
Click task chains and represent the operating system aspects
of a platform. They model the overhead required for event
handling, task scheduling, and communication.

From the annotated source, SystemClick generates a Sys-
temC model which is compiled together with element li-
braries for application and architecture using standard tools.
Using a performance database, the model can be simulated.

3.4 Performance simulation

The performance simulation executes Click graphs within
a SystemC environment. This way, the architecture plat-
form can be modeled in SystemC as precisely as desired
from platform resources with correct communication behav-
ior while the function within a building block is specified by a
Click application task graph. Concurrent Click task chains
are executed within different SystemC processes provided
by wrappers. A wrapper element is triggered by SystemC

482

processing resource
ey

I—o B
O O OO O

frame
output

Figure 3: SystemClick representation of an
application-architecture mapping.

Raus communication resource

events and must lock the RM it is associated with prior to
execution (see implementation in Fig. 4). The RM, in turn,
arbitrates its clients according to a given policy and provides
architecture information, such as operating frequency.

The SystemClick performance database associates each
task with costs for a particular resource, e.g., its process-
ing time or communication delay. For indicative results this
database is populated with realistic data which can be de-
rived, e.g., from characterizing individual Click elements a)
running on embedded processors [14] or b) implemented in
hardware [6]. The database (cf. Fig. 2) is accessed at run-
time to lookup the costs of each {task, resource} pair. Dy-
namic access is required due to data and state dependencies
of the runtime within a Click element. If necessary, costs
can be annotated down to the granularity of basic blocks. A
typical Click element has three to five of these tags.

To reduce simulation events, processing time accumulated
during the execution of a task chain is only synchronized
with the SystemC time at points of 10, see Fig. 4.
wrapper_push() // sc_thread
while in_port.avail()

m_delay = 0;

rm->lock( id );
in_port.nb_read( p );
update( &m_delay, os_pre );
push( p, &m_delay );

wait( m_delay );
rm->unlock( id );

// block until locked
//
//
//

os overhead anno
run Click task chain
synchronize

Figure 4: Exemplary SystemC facet of a (push)
wrapper, which is triggered by an IO event.

3.5 Performance analysis

To support the evaluation of a design point’s performance
a range of statistics and traces are provided by SystemClick:

e Resource Managers trace the execution of tasks and gather
data on utilization. They report the overall idle and ser-
vice time distribution for the resource as well as a per task

breakdowns of waiting and service time (min, ave, max).
IO elements gather statistics on their packet flows broken
down by packet size or type. They report packet numbers
and (min, ave, max) processing time per length/type.
Packets can store the sequence of passed elements over
their lifetime. For latency and delay analysis, time stamps
for creation and expected deletion can be annotated, e.g.,
to detect missed deadlines.



In addition, a set of Click elements can be used to verify
protocol conformance, monitor timing, and control tracing.

4. 1EEE 802.11 A/B/G/E CASE STUDY

4.1 Media Access Control (MAC) Click model

The model focusses on the full MAC layer function as
specified by the 802.11 a/b/g standard and adds the QoS
capabilities of 11e. Figure 5 shows a station MAC. Process-
ing paths through the model that we refer to in the results
section are listed in Table 1.

[T §

>
- s B

e g e [

Pownn i DCF

v
-

Pome T esnsnn

Gty ‘..:..ﬂ DCF

-
[PORND. ge=—
s [,

System-on-Chip Core | Host

PHYIAR

§
Ll
H

!
-

nnnn | i
—ﬂﬂkg H J ] g —— H Dow

Transaction Layer Data Link Layer

Figure 5: Click model of a wLAN 802.11 a/b/g sta-
tion with service differentiation (11e). Not all man-
agement processing paths are shown.

4.2 MAC time budgets

WLAN protocols define firm deadlines for transactions on
the air, see Section 2.2. Most relevant for the MAC time
budget is the timing for responding to a received frame.
A typical SIFS time is 16 us as defined in IEEE 802.11.

Inbound frame

Outbound response

Figure 6: MAC time budget for response frames.

SIFS = 16us |

128
RX PHY

2ps
MAC

205
RF

16ps Context
20ps Frame Data

It specifies the interval between a received frame and its
response. Since SIF'S is defined on the air, the physical layer
(PHY) receive (Rx) and transmit (Tx) processing delays are
included in the interval and must be subtracted. Figure 6
shows this in detail. In the Figure, the last byte of the
inbound frame is given to the MAC by the Rx PHY only
after 12 ps. The CRC can be calculated and the MAC
processing starts. For the response frame transmission, the
Tx PHY requires the frame data and context after different
setup times, as specified in Table 2.

For the analysis in this paper, we focus on the frame con-
text deadline. In order to be met, this deadline requires
completion of the full protocol processing.

4.3 Network setup

The network setup comprises two WLAN stations (STAO
and STA1) and an access point (AP) with WEP security

483

Table 1: Main processing paths in MAC model.

A) Outbound transactions. The Ethernet (ETH) header of a host frame
is replaced by a WLAN header, a sequence number is added, if necessary
the frame is fragmented and encrypted. Also, the transfer rate is selected
based on channel properties and the frame is put into a QoS queue. The DCF
module, which handles the timed access to the medium, reads the frame from
the queue as soon as the link state permits (air is idle for at least a DIFS
period, no pending retransmission, contention won). Finally, the duration
field is set, FCS appended, and the frame is sent to the PHY layer.

B) Inbound transactions. Inbound wireless frames are received and for-
warded to the link layer. The link layer checks the CRC, updates the NAV
timer, discards frames addressed to other stations, and classifies frames into
data, control, and management. Data frames are forwarded to the transac-
tion layer, which separates them by QoS class, removes duplicates from the
stream, decrypts and reassembles fragments into packets if necessary, and
replaces the WLAN header by an ETH header.

C) Outbound acknowledge. Unicast data frames accepted by the MAC ini-
tiate the generation of an acknowledge control frame. As soon as a SIFS
period passed, the frame is pushed into the regular processing path for out-
bound transactions (see path A). In the model, acknowledges are always
transmitted with the same rate as the data frame.

D) Inbound acknowledge. Inbound acknowledges follow the same processing
path as in case B until they are classified and forwarded to the DCF. Here retry
and back-off counters are reset if the link was expecting the acknowledge.
There is a timeout for not received ACK frames.

E) Outbound RTS/CTS. If an outbound frame is larger than a threshold
(SetRTS) the generation of an outbound RTS frame is triggered as soon
as the frame is read by the DCF element (cf. case A). Generation of CTS
frames is triggered by reception of RTS. Similar to outbound acknowledges,
RTS and CTS frames just follow the regular processing path of case A, after
DIFS or SIFS time, respectively.

F) Inbound RTS/CTS. Inbound RTS and CTS frames travel this processing
path to the DCF. An RTS triggers the generation of the associated CTS
(cf. path E). A received CTS frame triggers the transmission of an outbound
transaction after SIFS time.

G) Outbound management frames. Outbound management frames follow
for the most part the path of outbound transactions (path A). Here, the
generation of selected frames, e.g. ProbeRequest, is triggered by the host.

H) Inbound management frames. These frames travel up to the transaction
layer similar to inbound transactions (path B). They are classified and either
handled directly or forwarded to the host. Received beacons, e.g., are fed
into BeaconScanner/Tracker elements to monitor and update network state.

Table 2: Processing budget on a 400 MHz system.

. Budget
Group Description [us]  [eycles]
Go signal S_lgnals_ whether a transmis- 5 800
sion will follow
Frame context Context mfo_(length, STA 16 6400
address) required
Frame data WLA_N header and payload 20 8000
required

enabled. After initial authentication and association, every
station is saturated with IP-Packets in IMix [1] distribution
for transmission. The stations communicate with the AP,
whereas the AP sends packets to STAO. The air element
gets complete frames with their transfer rates and generates
the corresponding transmission delay and half-duplex/busy
behavior of the MAC/PHY interface.

4.4 Results of single-core mapping

In the following, we will evaluate platforms (defined by
hardware allocation, mapping, software implementation)
with respect to achievable network throughput, response
time to frame receptions, and resource utilization.

The single-core setup in this section maps the full sys-
tem model for a station as shown in Fig. 5 to a single CPU
resource (MIPS M4K CPU at 400MHz). This means, the
complete functionality is implemented in software.

Following the flow of packets through the MAC along the
different processing paths we first characterize the individ-
ual processing functions for the performance database using
our code generator CRACC [14] with instruction set simu-



lators and the Click MAC model. As an indication of the
processing complexity Figure 7 summarizes the instruction
counts for the different paths assuming accelerators for CRC
and security. The results show the handling of management

3500

[ outbound [ Inbound

3000

Max 1498 Byte
Typ 550 Byte
IMix 330 Byte
Min 36 Byte

2500

2000

1500

1000-

500

mals

A B Cc D E F

Outbound Outbound Inbound Outbound RTS/  Inbound RTS/
Data Acknowledge  Acknowledge  Inbound CTS  Outbound CTS

o
G H

Receive
Beacon

Inbound
Data

Generate
Beacon

Data frames Control frames

Management frames
I« e 9

- »

Figure 7: Single packet icounts per processing path.

frames to be the most compute-intense processing paths.
However, these frames are processed relatively infrequently
compared to data and control frames. Of the more frequent
data and control frames, the transmission of data frames in
outbound direction is the most instruction consuming case.
Achievable Throughput. Using the most instruction con-
suming path, we perform a worst case analysis assuming
that data frames are sent out back-to-back. Since most of
the protocol processing happens on a per packet basis, we
expect a throughput dependency on the packet size. We
observe a throughput ranging from 44 Mb/s to 638 Mb/s.
Considering inter frame gaps and protocol overhead on the
air this is sufficient for all investigated standards.
Resource utilization. As indicated by the throughput
analysis: A single MIPS 4k processor running at 400MHz
is underutilized. Even if we consider the crypto function in
software for the simulation, the processor is seldom used be-
yond 20% while reaching saturation of the medium. STA1
which only transmits packets has a load of 12%, STAO which
also receives frames has 19%, and the AP which has to pro-
cess three traffic streams plus additional management func-
tions has 27%. Largest contributors are the WEP imple-
mentation in software and the rate selection algorithm.
Response time. As mentioned before, most critical are
inter-frame gaps for control sequences like RTS/CTS and
ACK. Having the full station functionality mapped onto a
single core, we recognize that certain transmission deadlines
due to responses to received frames cannot be met. Caused
by the run-to-completion model of Click, a preceding pro-
cessing chain of Click elements can block the processor re-
gardless of the priority of sending a response frame. Some
cases overemphasize this fact since we have moved encryp-
tion processing to software, leading to large monolithic ele-
ments. Encryption alone can easily grow beyond 200us.
Figure 8 (single-core) shows a histogram of the results.
In detail, response times for the AP range from 6 to 303us
for acknowledges (ACK) with the majority between 40 and
6615, but 3.3% above 100us. Similarly, worst-case response
times for CTS and DATA are 233 and 114us respectively.

4.5 Results of refined mapping

The problem of missed transmission deadlines of the
single-core solution can be addressed by different ap-
proaches. First, the granularity of Click tasks and their

484

scheduling could be modified. Large Click elements can be
partitioned to reduce worst-case resource blocking time. In
addition, the run-to-completion semantics of Click could be
changed to preemptive/prioritized scheduling at the expense
of extra overhead. This is a serious change of the underly-
ing model of computation and will thus not be followed in
this paper. Second, resource allocation and mapping can
be modified so that interference is reduced. Since WLAN
shows significant data parallelism the partition onto sev-
eral resources does not cause data coherency problems as
known from general MP-SOCs. In the following we will fo-
cus on evaluating a different resource allocation and map-
ping, which can also be beneficial from a power perspective.
The results of the preceding subsection indicate that it will
be beneficial to either allocate different processing resources
to receive and transmit paths or mapping time critical el-
ements to a separate resource. Figure 8 shows the results
for the latter option in terms of a response-time histogram.
Mapping the critical link layer (cf. Fig. 5) onto an extra
processor leads to reduced response times. There was even
slack that we applied to reduce the processing speed. For the
same throughput, the non-realtime CPU runs at 150 MHz,
while the real-time CPU requires about 200 MHz.

10000 T
| Frame Context Deadline * Single-core ACK
i + Single-Core CTS
1 X Single-core DATA
1000 y ]
¥ g x Refined ACK
e X ‘ Refined CTS
g 3 x Refined DATA
£ 100 ;
3 n
3 :
o * ‘
o
10 = -
+ X X
+ x X X X XX X
+ XX X X X X X
+ + + * ++ XXX+ XX X
1 — XK — XX X
0 20 40 60 80 >100
Response Time [us]
Figure 8: Response time distribution for the
single CPU (400MHz) and refined dual CPU

(150/200MHz) mappings.

4.6 Discussion

The results using per-element profiling annotations indi-
cate the feasibility of implementing 802.11 MAC functions
including the time-critical control frame processing fully in
software. Based on the case study, we recognize:

The functional correct simulation increases the confidence
in quantitative comparisons of design alternatives. In Sys-
temClick, we can use realistic network setups with real
traffic and functional protocol descriptions.

The component-based modeling in Click proved to be flex-
ible and fast for applying modifications on application,
architecture and mapping on the granularity of elements.
During the case study, most of the effort was spent on the
verification of system functions with modified timings and
resource mappings. The tracing capabilities of System-
Click have been useful for understanding the interference
of protocol function and resource timing.

The generation of simulation models in combination
with CRACC-based profiling [14] and the performance
database enabled the fast evaluation of design points.



5. RELATED WORK

Modeling languages. SDL characterizes communication
protocols by control sequences and actions. The 802.11a
wireless standard includes an SDL description, which is used
in [7] for network analysis. The language focuses on the
control flow of an application. Dataflow and computation as
required for functional correctness are not first class citizens,
see [3]. Attempts that use SDL for performance analysis
note the lack of time-related features to express aspects, such
as timeouts, time-dependent enablers, or timing constraints
imposed by the environment. UML provides structure and
describes dependencies between elements, but lacks formal
semantics. The use of UML for the design of embedded real-
time systems is still a vivid research area [8]. Pérssinen [11]
describes a UML profile for communication protocols.

ESL for wireless MAC designs. There is much work
on generating implementations (in hard- and software) from
high-level descriptions, such as SDL, e.g., in [3, 10, 15]. The
results indicate a lack of implementation efficiency and re-
port significant overhead and restrictions; [10], for instance,
reports required clock frequencies of 1 GHz for the resulting
implementation after optimizations.

Frameworks. StepNP/MultiFlex [12] is a framework for a
network processor platform with hardware multi-threading
that can use Click as application description. Artemis [13]
is targeted at media processing applications and based on
Kahn process networks. The commercial CoFluent is sim-
ilar to [13] and targets platforms with VxWorks process-
ing elements. For the performance evaluation, the OS as-
pect is abstracted to latency and explicit scheduling strat-
egy 9] similar to SystemClick, while the application code is
represented by traces. Both frameworks do not provide a
feedback path from architecture timing model to functional
model systems, whereas in SystemClick architecture timing
can impact the system’s function. Metropolis [2] is a gen-
eral framework where arbitrary models of computation can
be expressed. Its generality, however, makes modeling more
complex and less intuitive than by restricting the designer
to one consistent application-specific representation. The
work in [16] and the references therein describe the state-
of-the-art of platform modeling in SystemC. Components
can be represented at transaction and RT levels, and pro-
grammable parts can be abstracted up to instruction set
simulators. The simulation of several architecture building
blocks at these levels is too complex to be used for early
design space exploration.

6. CONCLUSION

We have presented the SystemClick ESL design frame-
work that is tailored to the early design space exploration
of WLAN stations and networks. The combination of
performance modeling and functional correctness enables
the quantitative assessment of implementation alternatives
for timing critical protocols. Sensitive design parameters,
such as the arbitration of shared resources and granularity
of processing kernels, are exposed to the designer. The
functional description follows the dataflow driven Click
representation known from efficient software routers. The
integration with SystemC finally allows the reuse of simu-
lation and analysis, as well as refinement infrastructure. As
a result, we have shown in a case study looking at stations
of a IEEE 802.11 a/b/g/e network how domain-specific

485

models enable fast yet meaningful assessments of mapping
and implementation alternatives for the functionality, such
that response time and resource usage can be optimized.

Acknowledgments

This work has been supported in parts by the Bavarian
government (SmartFlow) and the European Union (Omega).
We thank C. Teerapat (U Paderborn) for his contributions
to the characterization of the WLAN library.

7. REFERENCES , ,
[1] Agilent Technologies. JTC 003: mixed packet size

throughput. The Journal of Internet Test
Methodologies, pages 16—-18, Sept. 2004.

F. Balarin, Y. Watanabe, H. Hsieh, et al. Metropolis:
an integrated electronic system design environment.
IEEE Computer, 36(4):45-52, Apr. 2003.

M. Hannikainen, J. Knuutila, T. Hamalainen, and

J. Saarinen. Using SDL for implementing a wireless
medium access control protocol. In ISMSE, 2000.

B. Kienhuis, E. Deprettere, K. Vissers, and P. van der
Wolf. An approach for quantitative analysis of
application-specific dataflow architectures. In 11th
ASAP, pages 338-349, July 1997.

E. Kohler et al. The Click modular router. ACM
Trans. on Computer Systems, 18(3), Aug. 2000.

C. Kulkarni, G. Brebner, and G. Schelle. Mapping a
domain specific language to a platform FPGA. In 41st
Design Automation Conference, pages 924-927, 2004.
P. Latkoski, T. Janevski, and B. Popovski. Modelling
and simulation of IEEE 802.11a wireless local area
networks using SDL. In MELECON, 2006.

L. Lavagno, G. Martin, and B. Selic, editors. UML for
real: design of embedded real-time systems. Kluwer
Academic Publishers, Norwell, MA, USA, 2003.

R. Le Moigne, O. Pasquier, and J.-P. Calvez. A
generic RTOS model for real-time systems simulation
with SystemC. In Design, Automation and Test in
Europe (DATE), volume 3, pages 82-87, 2004.

G. Panic, D. Dietterle, et al. A system-on-chip
implementation of the IEEE 802.11a MAC layer. In
Euromicro DSD, pages 319-324, 2003.

J. Parssinen, N. von Knorring, J. Heinonen, and

M. Turunen. UML for protocol engineering-extensions
and experiences. In 33rd TOOLS, 2000.

P. Paulin et al. Parallel programming models for a
multiprocessor SoC platform applied to networking
and multimedia. IEEE Trans. on VLSI, 14(7), 2006.
A. Pimentel, C. Erbas, and S. Polstra. A systematic
approach to exploring embedded system architectures
at multiple abstraction levels. IEEE Transactions on
Computers, 55(2):99-112, 2006.

C. Sauer, M. Gries, and S. Sonntag. Modular
domain-specific implementation and exploration
framework for embedded SW platforms. In DAC, 2005.
M. Varsamou et al. From protocol models to their
implementation: a versatile testing methodology.
IEEE Design & Test of Computers, 21(5), 2004.

A. Wieferink, T. Kogel, R. Leupers, et al. A system
level processor/communication co-exploration
methodology for multi-processor system-on-chip
platforms. In DATE, Apr. 2004.

2]

8]

(4]

[5]

[6]

[7

(8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

[16]



