Semi-Custom Design Flow: Leveraging Place and Route Tools in Custom Circuit Design

Nadeem Eleyan neleyan@qualcomm.com
Ken Lin klin@qualcomm.com
Masud Kamal masudk@qualcomm.com
Baker Mohammad bakerm@qualcomm.com
Paul Bassett pbassett@qualcomm.com
Outline

- Motivation for semi-custom
- Flow overview
- Usage model
- Better visibility
- Flow details
- Examples
- Conclusion
IC designers have two options to implement a circuit block:

- Synthesis / Auto place and route (ASIC)
- Custom circuit design / Custom Layout (Full Custom)

Choice is based on the following:

- Design complexity
- Timing requirements
- Area requirements
- Power requirements
- Project Schedule and Resources

Problem: designers tend to think of a hard boundary between the two flows:

- Block containing some non-static circuits (SRAM or dynamic) end up as Full Custom
- In reality only a portion of that block is non-static
- Most blocks also contain some standard CMOS circuits (data path and control logic)
- These portions can be built as ASIC or tiled standard cells.

Goal: allow designers to mix and match aspect from both ASIC and Full Custom approaches to improve productivity
<table>
<thead>
<tr>
<th></th>
<th>Full-Custom</th>
<th>Semi-Custom</th>
<th>ASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Sizing & logic opt.</td>
<td>All gates manually sized</td>
<td>Only gate that effect tiling</td>
<td>All Gates auto sized</td>
</tr>
<tr>
<td>Placement & Routing</td>
<td>Mostly custom</td>
<td>Only place & route critical parts of the design and let tool handle remaining</td>
<td>Mostly Auto</td>
</tr>
<tr>
<td>Development time</td>
<td>Months</td>
<td>Days / Weeks</td>
<td>Days</td>
</tr>
<tr>
<td>Iteration time</td>
<td>Days / weeks</td>
<td>Hours</td>
<td>Hours</td>
</tr>
<tr>
<td>Top level visibility</td>
<td>Black Box</td>
<td>Glass Box / White Box</td>
<td>White Box</td>
</tr>
</tbody>
</table>
The Semi-Custom block partitioning:

- **True Custom Macro Sub-block:**
 - Smallest portion of design that has to be Full Custom
 - Ex: SRAM array with non-static, small swing circuits
 - Primary interface to sub-block is fully static

- **Soft Macro Wrapper:**
 - Place and Route unit using standard Place and Route flow
 - Uses custom pitch matching, tiling and off grid pre-routing

Different portions of design handled in different ways:

- SRAM and non-static periphery still Full Custom
- Non-critical logic handled as standard ASIC
- Timing critical data-paths tiled and pitch-matched to SRAM
Semi-Custom flow usage model

- **Problem:** Full Custom design has long iteration time and upfront planning:
 - Circuit designer has to plan every single detail of the block
 - Mask designer has to draw every polygon of the layout before we can have fully routed design

- **Semi-custom flow uses an iterative approach:**
 - **First pass:**
 - Create a simple floor plan
 - Only pre-place True Custom Sub-Blocks
 - Let the standard place and route tool finish off the design
 - **First pass normally yields bad timing and routing results, but is used as a reference point**
 - **Next Iteration:**
 - Tile and/or pre-route top critical portions of the design
 - Don’t have to address all the critical paths at once
 - **Since iteration time is short (few hours) we can have a fully routed first pass design very quickly**
 - **Keep iterating until acceptable results are reached**

- At any point during this process we can stop and have a fully routed design

- **Result:** better trade off between ‘how much to optimize’ vs. ‘how quick to finish’

- **Extreme usage case:**
 - Manually size and pre-place each cell in the design
 - Pre-route each net.
 - Both results and effort will be comparable to a Full Custom Block.
Better Visibility

- Top level analysis flows (Timing / Power / Noise) have more visibility into Semi-Custom Blocks
- **Top level:**
 - Uses gate level tools (PrimeTime, BlastFusion, Talus, RedHawk)
- **Full Custom Blocks:**
 - Block level analyzed with transistor level tools (HSpice, HSim, Nanotime, Totum)
 - Black box Timing / Noise / Power / Physical Abstract
- Black boxing can cause miscommunication and inaccuracies
- Semi-Custom blocks allow top level visibility down to standard cells and custom sub-block
- Abstraction still needed for True Custom Macro Sub block
- That portion of design is much smaller and can be analyzed more easily
Semi-Custom flow is an Auto Place & Route flow with additional hooks:
- Force-Keep cells and nets
- Custom tiling
- Custom pre-routing

Special netlist requirements:
- Cells to be tiled must have predictable names
- Nets to be pre-routed must have predictable names

Synthesis flows do not guarantee these conditions

Methods to create the netlist:
- RTL macros expand to predetermined gate level structures
- Write netlist manually by hand or script
- Schematic entry using standard cells

We chose the schematic entry method because our designers were more comfortable with it
Semi-Custom flow details (cont.)

- **Force-Keep Cells & Nets:**
 - Default behavior of standard Place and Route flows is to optimize any gate or net in the design
 - Problem: tiling scripts may fail if instances disappear or change

- Same is true for nets we intend to pre-route if the flow inserts buffers in them
- Solution: mark cells to be tiled and nets to be pre-routed with “Force Keep”
- This ensures that they are still in the netlist when we reach the tiling and routing stages
- This however does not prevent the flow from upsizing / downsizing the gates as need
Semi-Custom flow details (cont.)

- **Custom Tiling:**
 - Tile critical parts of design
 - Use different algorithms depending on the context
 - Ex: Tile cells in reference to a custom sub block’s pins
 - Diagram shows typical pitch matching/tiling example:
 - Left side has Memory array with non-standard pitch
 - Tile next stage of logic to minimizes vertical routing
 - Place each cell in the same row as the custom pin it needs to be routed to
 - **Might end up with collisions:**
 - Both Inv<0> and Inv<1> need to be in second row
 - Use collision detections code to legalizes locations

![Diagram showing custom tiling example](image)
Custom Pre-Routing:

- **Pre-route critical nets in the design**
- **Standard auto router is timing driven:**
 - Tends to give certain bits of a regular structure higher priority than others
 - This results in non-uniform routing and congestion
- **Pre-routing ensure uniformity and congestion relief**
- **Pre-routing also used to guide router through off-grid routing resource in sub-arrays:**
 - net<0:3> needs to be routed through the sub-array
 - Each bit has only one metal 4 off-grid open track available
 - Pre-route metal 4 wires over the sub-array
 - Run standard router to finish off the route
Semi-Custom Examples

- Semi-Custom flow successfully use in Qualcomm high performance DSP core in 45nm technology
- The two areas the flow was used:
 - Memory blocks tiling
 - Pure data-path tiling

- Memory block tiling example:
 - 4 K Bit, 6 Read, 4 Write multi-port register file.
 - four 1K Full Custom sub arrays
 - Tiled first stage muxing between sub-arrays
 - Pre-routed mux outputs through sub-arrays
Semi-Custom Examples / Register file

Pre-routed design

Fully placed and routed design
The goal of the tiling and pre-routing in this case was to guide the Auto Place & Route flow out of the congested region between the sub arrays.

Congestion map w/o tiling

Congestion map with tiling
Semi-Custom Examples / Register file (cont.)

<table>
<thead>
<tr>
<th></th>
<th>no tiling or pre-routing</th>
<th>with tiling only</th>
<th>with tiling & pre-routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cell count</td>
<td>10120</td>
<td>10923</td>
<td>10910</td>
</tr>
<tr>
<td>Total cell area</td>
<td>0.042 mm²</td>
<td>0.039 mm²</td>
<td>0.038 mm²</td>
</tr>
<tr>
<td>Total wire count</td>
<td>140946</td>
<td>174025</td>
<td>139375</td>
</tr>
<tr>
<td>Total wire length</td>
<td>0.92459 m</td>
<td>1.01119 m</td>
<td>0.80323 m</td>
</tr>
<tr>
<td>Cells tiled</td>
<td>0 (0%)</td>
<td>1536 (14%)</td>
<td>1536 (14%)</td>
</tr>
<tr>
<td>Wires pre-routed</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>3388 (3%)</td>
</tr>
<tr>
<td>Short/Open/DRC</td>
<td>339/42/135</td>
<td>0/0/0</td>
<td>0/0/0</td>
</tr>
</tbody>
</table>

- Table shows the following three cases:
 - No custom tiling or pre-routing (ASIC case)
 - With custom tiling only
 - With both custom tiling and pre-routing

- Note: only 14% of cells tiled
- Note: only 3% of wires pre-routed
- Tiling alone helped reduce the total cell area and eliminate shorts, opens and DRC
- However, tiling alone increased the total wire count and length
 - Router can not utilize off-grid routing tracks in sub-array
 - Ends up routing around sub-array
- Pre-routing critical nets through the non-standard pitch open tracks was needed
Pure Data-Path block tiling example:

- 32 bit data path consisting of 6 stages of 2:1 muxs
- Block was implemented first as pure ASIC
- Block was rebuilt using custom tiling to align each data path bit in straight line
- In ASIC case BlastFusion optimized the circuit using different types of cells
Table shows the two cases:
- Full ASIC and
- Tiled data-path

Note: cell count went down by 70% as result of custom tiling
- ASIC case has high utilization which cases worse placement and routing
- Tiling reduced utilization by 34%
- Tiling also resulted in cleaner routing
- No custom pre-routing was needed

<table>
<thead>
<tr>
<th></th>
<th>no tiling</th>
<th>with tiling</th>
<th>% smaller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cell count</td>
<td>842</td>
<td>247</td>
<td>70.6%</td>
</tr>
<tr>
<td>Total cell area</td>
<td>0.001763 mm²</td>
<td>0.001161 mm²</td>
<td>34.1%</td>
</tr>
<tr>
<td>Utilization</td>
<td>89.3%</td>
<td>58.5%</td>
<td>34.5%</td>
</tr>
<tr>
<td>Total wire count</td>
<td>6558</td>
<td>2650</td>
<td>59.6%</td>
</tr>
<tr>
<td>Total wire length</td>
<td>0.00930 m</td>
<td>0.00523 m</td>
<td>43.7%</td>
</tr>
<tr>
<td>Cells tiled</td>
<td>0 (0%)</td>
<td>196 (77%)</td>
<td>-</td>
</tr>
<tr>
<td>Wires pre-routed</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>-</td>
</tr>
<tr>
<td>Short/Open/DRC</td>
<td>0/0/0</td>
<td>0/0/0</td>
<td>-</td>
</tr>
</tbody>
</table>
Another memory example:

- 16 KB Data Cache
- 8 x 2 KB sub arrays
- Several stages of data path logic
- Originally built as full custom on previous project
- Rebuilt as Semi-Custom with identical area and performance
- Time from RTL to Routed design 1 week
Full Custom comparison (cont.)

- Fully routed
- Semi-Custom
- Metal 4 routes
- Metal 5 routes
Conclusion

- Semi-Custom flow is a powerful design tool:
 - Improves custom circuit designers’ productivity
 - Allows control over custom placement and routing
 - Encourages designers to focus on critical parts of the design
 - Utilizes standard Place and Route tools for non-critical parts of design